
www.manaraa.com

The Open Agent Architecture:

A Framework for Building Distributed Software Systems

David L. Martin

Adam J. Cheyer

Douglas B. Moran

Arti�cial Intelligence Center

SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025 USA

+1 650 859 5552

fmartin,cheyer,morang@ai.sri.com

Abbreviated title: Open Agent Architecture

1

www.manaraa.com

Abstract

The Open Agent Architecture (OAA), developed and used for several years at SRI

International, makes it possible for software services to be provided through the co-

operative e�orts of distributed collections of autonomous agents. Communication and

cooperation between agents are brokered by one or more facilitators, which are respon-

sible for matching requests, from users and agents, with descriptions of the capabilities

of other agents. Thus, it is not generally required that a user or agent know the iden-

tities, locations, or number of other agents involved in satisfying a request. OAA is

structured so as to minimize the e�ort involved in creating new agents and \wrapping"

legacy applications, written in various languages and operating on various platforms;

to encourage the reuse of existing agents; and to allow for dynamism and
exibility in

the makeup of agent communities. Distinguishing features of OAA as compared with

related work include extreme
exibility in using facilitator-based delegation of complex

goals, triggers, and data management requests; agent-based provision of multimodal

user interfaces; and built-in support for including the user as a privileged member of

the agent community.

This paper explains the structure and elements of agent-based systems constructed

using OAA. The characteristics and use of each major component of OAA infrastructure

are described, including the agent library, the Interagent Communication Language,

capabilities declarations, service requests, facilitation, management of data repositories,

and autonomous monitoring using triggers. To provide technical context, we describe

the motivations for OAA's design, and situate its features within the realm of alternative

software paradigms. A summary is given of OAA-based systems built to date, and brief

descriptions are given of several of these.

2

www.manaraa.com

1 Introduction

The evolution of models for the design and construction of software systems is being driven

forward by several closely interrelated trends:

� The adoption of a networked computing model is leading to a greatly increased reliance

on distributed sites for both data and processing resources. Indeed, with a reported

1800 new computers being added to the Internet every day, a paradigm shift for com-

puting is well under way, one which moves away from requiring all relevant data and

programs to reside on the user's desktop machine. The data now routinely accessed

from computers spread around the world has become increasingly rich in format, com-

prising multimedia documents, and audio and video streams; with the popularization

of JAVA, it may also include programs that can be downloaded and executed on the

local machine. As we become increasingly reliant on networked computing, we need ap-
proaches to software design that allow for
exible composition of distributed processing
elements in a dynamically changing and relatively unstable environment.

� In an increasing variety of domains, application designers and users are coming to ex-
pect the deployment of smarter, longer-lived, more autonomous, software applications.

Push technology, persistent monitoring of information sources, and the maintenance
of user models, allowing for personalized responses and sharing of preferences, are

examples of the simplest manifestations of this trend. Commercial enterprises are
introducing signi�cantly more advanced approaches, in many cases employing recent
research results from arti�cial intelligence, data mining, machine learning, and other
�elds.

� More than ever before, the increasing complexity of systems, the development of new
technologies, and the availability of multimedia material and environments are creating
a demand for more accessible, more intuitive user interfaces. Autonomous, distributed,
multicomponent systems providing sophisticated services will no longer lend themselves
to the familiar \direct manipulation" model of interaction, in which an individual user

masters a �xed selection of commands provided by a single application. Ubiquitous

computing, in networked environments, has brought about a situation in which the
typical user of many software services is likely to be a nonexpert, who may access a given
service infrequently or only a few times. Accommodating such usage patterns calls for

new approaches. Fortunately, input modalities now becoming widely available, such

as speech recognition and pen-based handwriting/gesture recognition, and the ability
to manage the presentation of systems' responses by using multiple media provide an

opportunity to fashion a style of human-computer interaction that draws much more
heavily on our experience with human-human interactions.

The Open Agent Architecture Architecture (OAA), 1 a framework for constructing multiagent

systems developed at the Arti�cial Intelligence Center of SRI International, arose from a

1Open Agent Architecture and OAA are trademarks of SRI International. Other brand names and product

names herein are trademarks and registered trademarks of their respective holders.

3

www.manaraa.com

desire to accommodate developments in these three areas in an integrated framework, which

is suitable for practical use. In Sections 2 and 3 of this paper, we �rst review various

approaches to distributed computing, and then situate our own approach within the scope

of this related work. Following that, we brie
y characterize the range of OAA-based systems

built to date. Subsequent sections provide detailed descriptions of the inner workings of OAA.

Whereas the motivating concepts for an early version of OAA were presented in (Cohen et

al., 1994), and certain OAA-based systems have been described in (Cheyer and Julia, 1995;

Martin et al., 1996; Martin et al., 1997; Moore et al., 1996; Moran et al., 1997; Moran

and Cheyer, 1995), this is the �rst paper to present a detailed technical explanation of the

system-building resources provided by OAA.

2 Technologies for Distributed Computing

We brie
y review the overall concepts, advantages, and disadvantages of several relevant ap-
proaches to distributed computing, including distributed objects, mobile objects, blackboard-

style architectures, and agent-based software engineering.

2.1 The Distributed Object Approach

Object-oriented languages, such as C++ or JAVA, provide signi�cant advances over standard
procedural languages with respect to the reusability and modularity of code:

� Encapsulation: encourages the creation of library interfaces that minimize dependen-
cies on underlying algorithms or data structures. Changes to programming internals
can be made at a later date with requiring modi�cations to the code that uses the

library.

� Inheritance: permits the extension and modi�cation of a library of routines and data

without requiring source code to the original library.

� Polymorphism: allows one body of code to work on an arbitrary number of data types.

Whereas \standard" object-oriented programming (OOP) languages can be used to build

monolithic programs out of many object building blocks, distributed object technologies

(DOOP) such as OMG's CORBA ((OMG), 1997) or Microsoft's DCOM (Microsoft, 1996)

allow the creation of programs whose components may be spread across multiple machines.
To implement a client-server relationship between objects, distributed object systems use
a registry mechanism (CORBA's registry is called an Object Request Broker, or ORB) to

store the interface descriptions of available objects. Through the ORB's services, a client

can transparently invoke a method on a remote server object; the ORB is responsible for

�nding an object that can implement the request, passing it the parameters, invoking its
method, and returning the results. The client does not have to be aware of where the object

4

www.manaraa.com

is located, its programming language, its operating system, or any other system aspects that

are not part of an object's interface.

Although distributed objects o�er a powerful paradigm for creating networked applications,

certain aspects of the approach are not perfectly tailored to the constantly changing envi-

ronment of the Internet. A major restriction of the DOOP approach is that the interactions

among objects are �xed through explicitly coded instructions by the application developer.

This implies that it is very di�cult to reuse an object in a new application without bringing

along all its inherent dependencies on other objects (embedded interface de�nitions and ex-

plicit method calls). Another restriction of the DOOP approach is the result of its reliance

on a remote procedure call (RPC) style of communication. Although easy to debug, this

single thread of execution model does not facilitate programming to exploit the potential for

parallel computation that one would expect in a distributed environment. In addition, RPC

uses a blocking (synchronous) scheme that does not scale well for high-volume transactions.

2.2 Mobile Objects

Mobile objects, sometimes called mobile agents, are bits of code that can move to another
execution site (presumably on a di�erent machine) under their own programmatic control,
where they can then e�ciently interact with the local environment. Commercial instantia-
tions of this technology include Aglets from IBM, Concordia from Mitsubishi, and Voyager

from ObjectSpace.

For certain types of problems, the mobile object paradigm o�ers advantages over more
traditional distributed object approaches. These advantages include

� Network bandwidth: for some database queries or electronic commerce applications,
it is more e�cient to perform tests on data by bringing the tests to the data than by

bringing large amounts of data to the testing program.

� Parallelism: mobile agents can be spawned in parallel to accomplish many tasks at

once.

Disadvantages (or inconveniences) of the mobile agent approach are that

� In a fashion similar to that of DOOP programming, an agent developer must program-
matically specify where to go and how to interact with the target environment.

� There is generally little coordination support to encourage interactions among multiple
(mobile) participants.

� Agents must be written in the programming language supported by the execution en-

vironment, whereas many other distributed technologies support heterogeneous com-

munities of components, written in diverse programming languages.

5

www.manaraa.com

2.3 Blackboard Architectures

Blackboard approaches, such as Schwartz's FLiPSiDE (Schwartz, 1995) or Gelernter's

LINDA (Gelernter, 1993), allow multiple processes to communicate by reading and writ-

ing tuples from a global data store. Each process can watch for items of interest, perform

computations based on the state of the blackboard, and then add partial results or queries

that other processes can consider.

Blackboard architectures provide a
exible framework for problem solving by a dynamic com-

munity of distributed processes. A blackboard approach provides one solution to eliminating

the tightly bound interaction links that some of the other distributed technologies require

during interprocess communication. This advantage can also be a disadvantage: although a

programmer does not need to refer to a speci�c process during computation, the framework

does not provide programmatic control for doing so in cases where this would be practical.

2.4 Agent-based Software Engineering

Several research communities have approached distributed computing by casting it as a
problem of modeling communication and cooperation among autonomous entities. E�ective
communication among independent actors requires four components: (1) a transport mech-
anism carrying messages in an asynchronous fashion, (2) an interaction protocol de�ning

various types of communication interchange and their social implications (for instance, a
response is expected of a question), (3) a content language permitting the expression and
interpretation of utterances, and (4) an agreed-upon set of shared vocabulary and meaning
for concepts (often called an ontology). Such mechanisms permit a much richer style of in-
teraction among participants than can be expressed using a distributed object's RPC model

or a blackboard architecture's centralized exchange approach.

Undoubtably, the most widely used foundation technology for agent-based software engi-
neering is the Knowledge Query and Manipulation Language (KQML) (Labrou and Finin,
1997; Finin et al., 1997). KQML, which speci�es an interaction protocol, is often used in
conjunction with the Knowledge Interchange Format (KIF) (Genesereth and Fikes, 1992) as

content language, and either ad hoc or more formalized ontologies. KQML introduced the
use of symbolic performatives to capture information about the purpose of a communication,

and its place within a conversation. Although creating a standardized representation for con-
versational interactions is one important aspect of multiagent cooperation, KQML is limited

by its reliance on a �xed core set of atomic performatives, and the inevitable di�culty in

arriving at just the right set capable of expressing every kind interaction and service request.

Another in
uential approach, which makes stronger assumptions about the knowledge and

processing used within individual agents, is based on the structuring of the agents' activities
around the concepts of Belief, Desire, and Intention (BDI) (Rao and George�, 1995). While

BDI's emphasis on a higher level of abstraction has been extremely important in giving

direction to work on agent-based systems, its applicability may be limited by the structural

requirements imposed on individual agents, and by di�culties in interoperating with legacy

6

www.manaraa.com

systems.

3 Philosophy and Goals of OAA

Our approach to distributed computing shares much in common with the paradigms out-

lined above. As with distributed object frameworks, the primary goal of OAA is to provide

a means for integrating heterogeneous applications in a distributed infrastructure. However,

we have also sought to incorporate some of the dynamism and extensibility of blackboard

approaches, the e�ciency associated with mobile objects, and the rich and complex inter-

actions of communicating agents. Here, we spell out in greater detail the goals of OAA,

which may be categorized under the general headings of interoperation and cooperation, user

interfaces, and software engineering.

Versatile mechanisms of interoperation and cooperation. Interoperation refers to the
ability of distributed software components { agents { to communicate meaningfully. While

every system-building framework must provide mechanisms of interoperation at some level of
granularity, agent-based frameworks face important new challenges in this area. This is true
primarily because autonomy, the hallmark of individual agents, necessitates greater
exibility
in interactions within communities of agents. Coordination refers to the mechanisms by which
a community of agents is able to work together productively on some task. In these areas,

the goals for our framework are to

� Provide
exibility in assembling communities of autonomous service providers | both
at development time and at runtime. Agents that conform to the linguistic and on-
tological requirements for e�ective communication should be able to participate in an

agent community, in various combinations, with minimal prerequisite knowledge of the
characteristics of the other players. Agents with duplicate and overlapping capabilities
should be able to coexist within the same community, with the systemmaking the best
possible use of the redundancy.

� Provide
exibility in structuring cooperative interactions among the members of a com-

munity of agents. A framework should provide economical means of setting up a variety

of interaction patterns among agents, without requiring an inordinate amount of com-
plexity or infrastructure within the individual agents. The provision of a service should

not be dependent upon a particular con�guration of agents.

� Impose the right amount of structure on individual agents. Di�erent approaches to
the construction of multiagent systems impose di�erent requirements on the individual

agents. For example, because KQML is neutral as to the content of messages, it

imposes minimal structural requirements on individual agents. On the other hand,

the BDI paradigm is likely to impose much more demanding requirements, because it

makes assumptions about the nature of the programming elements that are meaningful
to individual agents. OAA falls somewhere between the two; our goal has been to

provide a rich set of interoperation and coordination, but without precluding any of

the software engineering goals de�ned below.

7

www.manaraa.com

� Include legacy and \owned-elsewhere" applications. Whereas legacy usually implies

reuse of an established system fully controlled by the agent-based system developer,

owned-elsewhere refers to applications to which the developer has partial access, but

no control. Examples of the latter are data sources and services available on the World

WideWeb, via simple form-based interfaces, and applications used cooperatively within

a virtual enterprise, which remain the property of separate corporate entities. It must

be possible for both classes of application to interoperate, more or less as full-
edged

members of the agent community,without requiring an overwhelming integration e�ort.

Human-oriented user interfaces. Systems composed of multiple distributed components,

and possibly dynamic con�gurations of components, require the crafting of intuitive user

interfaces to

� Provide conceptually natural means of interacting with multiple distributed compo-
nents. When there are numerous disparate agents, and/or complex tasks implemented
by the system, the user should be able to express requests without having detailed
knowledge of the individual agents. With speech recognition, handwriting recognition,
and natural language technologies becoming more mature, an agent architecture must

be prepared for these forms of input to play an increased role in the tasking of agent
communities.

� Treat users as privileged members of the agent community. By providing an appropriate

level of task speci�cation within software agents, and reusable means of translating
between this level and the level of human requests, it should be possible to construct
interactions that seamlessly incorporate both types of \agent".

� Support collaboration (simultaneous work over shared data and processing resources)
between users and agents.

Realistic software engineering requirements. To be successful, a system-building

framework must address the practical concerns of real-world applications, as expressed by

these goals:

� Minimize the e�ort required to create new agents, and to wrap existing applications.

� Encourage reuse, both of domain-independent and domain-speci�c components. The

concept of agent orientation, like that of object orientation, provides a natural concep-
tual framework for reuse, so long as mechanisms for encapsulation and interaction are

structured appropriately.

� Support lightweight, mobile platforms. Such platforms should be able to serve as hosts

for agents, without requiring the installation of a massive environment. It should also
be possible to construct individual agents that are relatively small and modest in their

processing requirements.

8

www.manaraa.com

� Minimize platform and language barriers. Creation of new agents, as well as wrap-

ping of existing applications, should not require the adoption of a new language or

environment.

4 Overview of OAA

In this section, we present an overview of OAA, �rst describing the basic components and

structure of the framework, and then illustrating these concepts with a sample application.

4.1 OAA System Structure

Figure 1 presents the structure typical of a small OAA system, showing a user interface agent
and several application agents and meta-agents, organized as a community of peers by their
common relationship to a facilitator agent.

The facilitator is a specialized server agent that is responsible for coordinating agent com-
munications and cooperative problem-solving. In many systems, the facilitator is also used
to provide a global data store for its client agents, which allows them to adopt a blackboard
style of interaction. Note that a system con�guration is not limited to a single facilitator.
Larger systems can be assembled from multiple facilitator/client groups, each having the

sort of structure shown in Figure 1.

The other categories of agents illustrated here { application agents, meta-agents, and user
interface agents { are categories recognized by convention only; that is, they are not formally
distinguished within the system. Application agents are usually specialists that provide a

collection of services of a particular sort. These services could be domain-independent tech-
nologies (such as speech recognition, natural language processing, email, and some forms of
data retrieval and data mining) or user-speci�c or domain-speci�c (such as a travel planning
and reservations agent). Application agents may be based on legacy applications or libraries,
in which case the agent may be little more than a wrapper that calls a pre-existing API.

Meta-agents are those whose role is to assist the facilitator agent in coordinating the ac-

tivities of other agents. While the facilitator possesses domain-independent coordination

strategies, meta-agents can augment these by using domain- and application-speci�c knowl-
edge or reasoning (rules, learning algorithms, planning, and so forth).

The user interface agent plays an extremely important and interesting role in many OAA

systems. In some systems, this agent is implemented as a collection of \micro-agents", each

monitoring a di�erent input modality (point-and-click, handwriting, pen gestures, speech),
and collaborating to produce the best interpretation of the current inputs. These micro-

agents are shown in Figure 1 as Modality Agents.

All agents that are not facilitators are referred to as client agents | so called because each

acts (in some respects) as a client of some facilitator, which provides communication and

other essential services for the client. When invoked, a client agent makes a connection to

9

www.manaraa.com

a facilitator, which is known as its parent facilitator. Upon connection, an agent informs its

parent facilitator of the services it can provide. When the agent is needed, the facilitator

sends it a request expressed in the Interagent Communication Language (ICL). The agent

parses this request, processes it, and returns answers or status reports to the facilitator. In

processing a request, the agent can make use of a variety of capabilities provided by OAA.

For example, it can use ICL to request services of other agents, set triggers, and read or write

shared data on the facilitator (or other client agents that maintain shared data).

The common infrastructure for constructing agents is supplied by an agent library, which

is available in several di�erent programming languages. The library has been designed to

minimize the e�ort required to construct a new system, and to maximize the ease with which

legacy systems can be agenti�ed.

4.2 Sample Interactions

Perhaps the best way to obtain an intuitive sense of how the OAA typically functions is

to brie
y look at an example of how OAA has been applied to a real application. In the
Automated O�ce system, a mobile executive with a telephone and a laptop computer can
access and task commercial applications such as calendars, databases, and email systems
running back at the o�ce. As depicted in Figure 2, an application agent provides a wrapper
for each program, making its functionality and natural language vocabulary available to the

agent community through registration with a facilitator.

A user interface (UI) agent, shown in Figure 3, runs on the user's local laptop and is respon-
sible for accepting user input, sending requests to the facilitator for delegation to appropriate
agents, and displaying the results of the distributed computation. The user may interact
directly with a speci�c remote application by clicking on active areas in the interface, call-

ing up a form or window for that application, and making queries with standard interface
dialog mechanisms. Conversely, a user may express a task to be executed by using typed,
handwritten, or spoken (over the telephone) English sentences, without explicitly specify-
ing which agent or agents should perform the task. For instance, if the question \What is
my schedule?" is written in the user interface, this request will be sent by the UI to the

facilitator, which in turn will ask a natural language (NL) agent to translate the query into
ICL. To accomplish this task, the NL agent may itself need to make requests of the agent

community to resolve unknown words such as \me" (the UI agent can respond with the name
of the current user) or \schedule" (the calendar agent de�nes this word). The resulting ICL

expression is then routed by the facilitator to appropriate agents (in this case, the calendar
agent) to execute the request. Results are sent back to the UI agent for display.

The spoken request \When mail arrives for me about security, notify me immediately."
produces a slightly more complex example involving communication among all agents in

the system. After translation into ICL as described above, the facilitator installs a trigger
on the mail agent to look for new messages about security. When one such message does

arrive in its mail spool, the trigger �res, and the facilitator matches the action part of

the trigger to capabilities published by the noti�cation agent. The noti�cation agent is an

10

www.manaraa.com

example of a meta-agent, as it makes use of rules concerning the optimal use of di�erent

output modalities (email, fax, speech generation over the telephone) plus information about

an individual user's preferences to determine the best way of relaying a message through

available media transfer application agents. After some competitive parallelism to locate the

user (the calendar and database agents may have di�erent guesses as to where to �nd the

user) and some cooperative parallelism to produce required information (telephone number

of location, user password, and an audio �le containing a text-to-speech representation of

the email message), a telephone agent can call the user, verify identity through touchtones,

and then play the message.

Some key ideas illustrated by the above examples are the following:

1. As new agents connect to the facilitator, registering capability speci�cations and nat-

ural language vocabulary, what the user can say and do dynamically changes.

2. The interpretation and execution of a task is a distributed process, with no one agent

de�ning the set of possible inputs to the system.

3. A single request can produce cooperation and
exible communication among many
agents, written in di�erent programming languages and spread across multiple ma-

chines.

In our following detailed view of the Open Agent Architecture, we order the presentation
top-down, beginning with the means by which a group of agents works together, then con-
sidering the mechanisms that support the use of shared data repositories and triggers, and
�nally describing some of the basic infrastructure underlying the construction of individual

agents. To illustrate the technical aspects of the approach, we describe several applications
implemented within the OAA.

5 Mechanisms of Cooperation

Cooperation among the agents of an OAA system is achieved via messages expressed in a
common language, ICL, and is normally structured around a three-part approach: providers
of services register capabilities speci�cations with a facilitator, requesters of services con-

struct goals and relay them to a facilitator, and facilitators coordinate the e�orts of the

appropriate service providers in satisfying these goals.

5.1 The Interagent Communication Language

OAA's Interagent Communication Language (ICL) is the interface, communication, and task

coordination language shared by all agents, regardless of what platform they run on or what
computer language they are programmed in. ICL is used by an agent to task itself or some

11

www.manaraa.com

subset of the agent community, either using explicit control or, more frequently, in an under-

speci�ed, loosely constrained manner. OAA agents employ ICL to perform queries, execute

actions, exchange information, set triggers, and manipulate data in the agent community.

One of the fundamental program elements expressed in ICL is the event. The activities of

every agent, as well as communications between agents, are structured around the transmis-

sion and handling of events. In communications, events serve as messages between agents; in

regulating the activities of individual agents, they may be thought of as goals to be satis�ed.

Each event has a type, a set of parameters, and content. For example, the agent library

procedure oaa Solve can be used by an agent to request services of other agents. A call to

oaa Solve, within the code of agent A, results in an event having the form

ev post solve(Goal, Params)

going from A to the facilitator, where ev post solve is the type, Goal is the content, and
Params is a list of parameters. The allowable content and parameters vary according to the
type of the event.

The ICL includes a layer of conversational protocol, similar in spirit to that provided by
KQML, and a content layer, analogous to that provided by KIF. The conversational layer of
ICL is de�ned by the event types, together with the parameter lists associated with certain of
these event types. The content layer consists of the speci�c goals, triggers, and data elements
that may be embedded within various events.

The conversational protocol is speci�ed using an orthogonal, parameterized approach. That
is, the conversational aspects of each element of an interagent conversation are represented
by a selection of an event type, in combination with a selection of values for an orthogonal
set of parameters. This approach o�ers greater expressiveness than an approach based solely
on a �xed selection of speech acts, such as embodied in KQML. For example, in KQML, a

request to satisfy a query can employ either of the performatives ask all or ask one. In ICL,
on the other hand, this type of request is expressed by the event type ev post solve, together
with the solution limit(N) parameter { where N can be any positive integer. (A request for

all solutions is indicated by the omission of the solution limit parameter.) The request can
also be accompanied by other parameters, which combine to further re�ne its semantics.

In KQML, then, this example forces one to choose between two possible conversational op-
tions, neither of which may be precisely what is desired. In either case, the performative
chosen is a single value that must capture the entire conversational characterization of the

communication. This requirement raises a di�cult challenge for the language designer, to

select a set of performatives that provides the desired functionality without becoming un-

manageably large. Consequently, the debate over the right set of performatives has consumed

much discussion within the KQML community.

The content layer of the ICL has been designed as an extension of the PROLOG programming

language, to take advantage of uni�cation and other features of PROLOG. OAA's agent
libraries (especially the non-PROLOG versions) provide support for constructing, parsing,

and manipulating ICL expressions.

12

www.manaraa.com

While it is possible to embed content expressed in other languages within an ICL event, it is

advantageous to express content in ICL wherever possible. The primary reason for this is to

allow the facilitator access to the content, as well as the conversational layer, in delegating

requests. Not only does this give the facilitator more information about the nature of a

request, but it also makes it possible for the facilitator to decompose compound requests,

and individually delegate the subrequests.

Important declarations and other program elements represented using ICL expressions in-

clude, in addition to events, capabilities declarations, requests for services, responses to

requests, trigger speci�cations, and shared data elements.

5.2 Providing Services

Every agent participating in an OAA-based system de�nes and publishes a set of capabilities
declarations, expressed in ICL, describing the services that it provides. These declarations
establish a high-level interface to the agent. This interface is used by a facilitator in com-

municating with the agent, and, most important, in delegating service requests (or parts of
requests) to the agent. Partly due to the use of PROLOG as the basis of ICL, we refer to
these capabilities declarations as solvables.

Two major types of solvables are distinguished: procedure solvables and data solvables. In-
tuitively, a procedure solvable performs a test or action, whereas a data solvable provides

access to a collection of data. For example, in creating an agent for a mail system, proce-
dure solvables might be de�ned for sending a message to a person, testing whether a message
about a particular subject has arrived in the mail queue, or displaying a particular message
onscreen. For a database wrapper agent, one might de�ne a distinct data solvable corre-
sponding to each of the relations present in the database. Often, a data solvable is used to

provide a shared data store, which may be not only queried, but also updated, by various
agents having the required permissions.

Technically, the primary di�erences between the two types of solvables are these: First,

each procedure solvable must have a handler declared and de�ned for it, whereas this is
not necessary for a data solvable. (The handling of requests for a data solvable is provided

transparently by the agent library.) Second, data solvables are associated with a dynamic
collection of facts (or clauses), which may be modi�ed at runtime, both by the agent providing

the solvable, and by other agents (provided they have the required permissions). Third,
special features, available for use with data solvables, facilitate maintaining the associated

facts. Some of these features are mentioned in Section 6.

In spite of these di�erences, it should be noted that the means of use (that is, the means by

which an agent requests a service) is the same for the two types of solvables. Requesting of
services is described in Section 5.3.

A request for one of an agent's services normally arrives in the form of an event from the

agent's facilitator. The appropriate handler then deals with this event. The handler may

be coded in whatever fashion is most appropriate, depending on the nature of the task, and

13

www.manaraa.com

the availability of task-speci�c libraries or legacy code, if any. The only hard requirement is

that the handler return an appropriate response to the request, expressed in ICL. Depending

on the nature of the request, this response could be an indication of success or failure, or a

list of solutions (when the request is a data query).

The agent library provides a set of procedures allowing an agent to add, remove, and modify

its solvables, which it may do at any time after connecting to its facilitator.

5.2.1 Speci�cation of Solvables

A solvable has three parts: a goal, a list of permissions, and a list of parameters, which are

declared using the format

solvable(Goal, Parameters, Permissions)

The goal of a solvable, which syntactically takes the form of an ICL structure, is a logical
representation of the service provided by the solvable. (An ICL structure consists of a functor

with 0 or more arguments. For example, in the structure a(b,c), `a' is the functor, and `b'
and `c' the arguments.) As with a PROLOG structure, the goal's arguments may themselves
be structures.

Various options can be included in the parameters list, to re�ne the semantics associated
with the solvable. First and foremost, the type parameter is used to say whether the solvable

is data or procedure. When the type is procedure, another parameter may be used to indicate
the handler to be associated with the solvable. Some of the parameters appropriate for a
data solvable are mentioned in Section 6.

In either case (procedure or data solvable), the private parameter may be used to restrict the
use of a solvable to the declaring agent. This parameter is valuable when the agent intends

the solvable to be solely for its internal use and wants to take advantage of OAA mechanisms
in accessing it, or when the agent wants the solvable to be available to outside agents only
at selected times. In support of the latter case, it is possible for the agent to change the
status of a solvable from private to nonprivate at any time.

The permissions of a solvable provide the means by which an agent may control access to its
services. They allow the agent to restrict calling and writing of a solvable to itself and/or

other selected agents. (Calling means requesting the service encapsulated by a solvable,

whereas writing means modifying the collection of facts associated with a data solvable.
) The default is for every solvable to be callable by anyone, and for data solvables to be
writable by anyone. A solvable's permissions can be changed at any time, by the agent

providing the solvable.

For example, the solvables of a simple email agent might include

solvable(send_message(email, +ToPerson, +Params),

[type(procedure), callback(send_mail)],

[])

14

www.manaraa.com

solvable(last_message(email, -MessageId),

[type(data), single_value(true)],

[write(true)]),

solvable(get_message(email, +MessageId, -Msg),

[type(procedure), callback(get_mail)],

[])

The symbols `+' and `-', indicating input and output arguments, are at present used only

for purposes of documentation. Most parameters and permissions have default values, and

speci�cations of default values may be omitted from the parameters and permissions lists.

A programmer who de�nes an agent's capabilities in terms of solvable declarations is, in a

sense, creating the vocabulary with which other agents will communicate with the new agent.

The problem of ensuring that agents will speak the same language and share a common, un-

ambiguous semantics of the vocabulary, is called the ontology problem. The OAA provides a
few tools (see more about agent development tools in (Martin et al., 1996)) and services (au-
tomatic translations of solvables by the facilitator) to help minimize this issue; however, the
OAA still must rely on vocabulary from either formally engineered ontologies for speci�c do-
mains (for instance, see http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html/)

or on ontologies constructed during the incremental development of a body of agents for
several applications.

Although OAA imposes no hard restrictions (other than the basic syntax) on the form of
solvable declarations, two common usage conventions illustrate some of the utility associated
with solvables.

� Classes of services are often tagged by a particular type. For instance, in the example
above, the \last message" and \get message" solvables are specialized for email, not
by modifying the names of the services, but rather by the use of the `email' parameter,
which serves during the execution of an ICLrequest to select (or not) a speci�c type of
message.

� Actions are generally written using an imperative verb as the functor of the solvable, the

direct object (or item class) as the �rst argument of the predicate, required arguments

following, and then an extensible parameter list as the last argument. The parameter
list can hold optional information usable by the function. The ICLexpression generated

by a natural language parser often makes use of this parameter list to store prepositional
phrases and adjectives.

As an illustration of the above two points, \Send mail to Bob about lunch" will be translated

into an ICLrequest send message(email, `Bob Jones', [subject(lunch)]), whereas \Remind
Bob about lunch" would leave the transport unspeci�ed (send message(KIND, `Bob Jones',

[subject(lunch)])), enabling all available message transfer agents (e.g., fax, phone, mail,
pager) to compete for the opportunity to carry out the request.

15

www.manaraa.com

5.3 Requesting Services

An agent requests services of the community by delegating tasks or goals to its facilitator.

Each request contains calls to one or more agent solvables, and optionally speci�es parameters

containing advice to help the facilitator determine how to execute the task. It is important

to note that calling a solvable does not require that the agent specify (or even know of) a

particular agent or agents to handle the call. While it is possible to specify one or more

agents using an address parameter (and there are situations in which this is desirable), in

general it is advantageous to leave this delegation to the facilitator. Programming in this

style greatly reduces the hard-coded dependencies among components that one often �nds

in other distributed frameworks.

The OAA libraries provide an agent with a single, uni�ed point of entry for requesting services

of other agents: the library procedure oaa Solve. In the style of logic programming, oaa Solve

may be used both to retrieve data and to initiate actions. To put this another way, calling
a data solvable looks the same as calling a procedure solvable.

5.3.1 Compound Goals

One of the most powerful features of OAA is the ability of a client agent (or a user) to
submit compound goals to a facilitator. A compound goal is composed using operators
similar to those employed by PROLOG, that is, the comma for conjunction, the semicolon
for disjunction, and the arrow for conditional execution. Three of the several signi�cant
extensions to PROLOG syntax and semantics are of particular interest here. First, a \parallel

disjunction" operator indicates that the disjuncts are to be executed (by di�erent agents)
simultaneously. Second, it is possible to specify whether a given subgoal is to be executed
breadth-�rst or depth-�rst. 2 Third, each subgoal of a compound goal can have an address
and/or a set of parameters attached to it. Thus, each subgoal takes the form

Address:Goal::Parameters

where both Address and Parameters are optional.

An address, if present, speci�es one or more agents to handle the given goal, and may employ

several di�erent types of referring expression: unique names, symbolic names, and shorthand
names. Every agent has a unique name, assigned by its facilitator, which relies upon network

addressing schemes to ensure its global uniqueness. Agents also have self-selected symbolic

names (for example, \mail"), which are not guaranteed to be unique. When an address
includes a symbolic name, the facilitator takes this to mean that all agents having that
name should be called upon. Shorthand names include `self' and `parent' (which refers to

the agent's facilitator). We emphasize that the address associated with a goal or subgoal

is always optional. When an address is not present, it is the facilitator's job to supply an
appropriate address, as explained in Section 5.5.

2This capability is under development.

16

www.manaraa.com

The distributed execution of compound goals becomes particularly powerful when used in

conjunction with natural language or speech-enabled interfaces, as the query itself may

specify how functionality from distinct agents will be combined. As a simple example, the

spoken utterance \Fax it to Bill Smith's manager." can be translated into the following

compound ICL request:

oaa_Solve((manager('Bill Smith', M), fax(it,M,[])), [strategy(action)])

5.4 Re�ning Service Requests

The parameters associated with a goal (or subgoal) can draw on useful features to re�ne the

request's meaning. For example, it is frequently important to be able to specify whether

or not solutions are to be returned synchronously; this is done using the reply parameter,

which can take any of the values synchronous, asynchronous, or none. As another example,
when the goal is a noncompound query of a data solvable, the cache parameter may be used
to request local caching of the facts associated with that solvable. Many of the remaining
parameters fall into two categories: advice and feedback.

Feedback parameters allow a service requester to receive information from the facilitator
about how a goal was handled. This feedback can include such things as the identities of the
agents involved in satisfying the goal, and the amount of time expended in the satisfaction
of the goal.

Advice parameters give constraints or guidance for the facilitator to use in completing and

interpreting the goal. For example, the solution limit parameter allows the requester to say
how many solutions it is interested in; the facilitator and/or service providers are free to
use this information in optimizing their e�orts. Similarly, time limit is used to say how long
the requester is willing to wait for solutions to its request, and, in a multifacilitator system,
level limit may be used to say how remote the facilitators may be that are consulted in the

search for solutions. The priority parameter is used to indicate that a request is more urgent
than previous requests that have not yet been satis�ed. Other advice parameters are used
to tell the facilitator whether parallel satisfaction of the parts of a goal is appropriate, how
to combine and �lter results arriving from multiple solver agents, and whether the requester

itself may be considered a candidate solver of the subgoals of a request.

As mentioned in section 5.1, advice parameters are intended to provide an extensible set of

low-level, orthogonal parameters capable of combining with the ICL goal language to fully ex-

press how information should
ow among participants. Multiple parameters can be grouped
together and given a group name; the resulting high-level advice parameters can be used
to express concepts analogous to KQML's performatives, but also to de�ne classi�cations

of problem types. For instance, KQML's \ask all" and \ask one" performatives would be
represented as combinations of values given to the parameters reply, parallel ok, and so-

lution limit. As an example of a higher-level problem type, the strategy \math problem"

might send the query to all appropriate math solvers in parallel, collect their responses, and

signal a con
ict if di�erent answers are returned. The strategy \essay question" would send

17

www.manaraa.com

the request to all appropriate participants, and signal a problem (i.e., cheating) if any of the

returned answers are identical.

When a facilitator receives a compound goal, its job is to construct a goal satisfaction plan

and oversee its satisfaction in the most appropriate, e�cient manner that is consistent with

the speci�ed advice.

5.5 Facilitation

Facilitation plays a central role in OAA. At its core, our notion of facilitation is similar to

that proposed by Genesereth (Genesereth and Singh, 1993) and others. In short, a facilitator

maintains a knowledge base that records the capabilities of a collection of agents, and uses

that knowledge to assist requesters and providers of services in making contact. But our

notion of facilitation is also considerably stronger in four respects.

First, it encompasses a very general notion of transparent delegation, which means that
a requesting agent can generate a request, and a facilitator can manage the satisfaction

of that request, without the requester needing to have any knowledge of the identities or
locations of the satisfying agents. In some cases, such as when the request is a data query,
the requesting agent may also be oblivious to the number of agents involved in satisfying
a request. Transparent delegation is possible because agents' capabilities (solvables) are
treated as an abstract description of a service, rather than as an entry point into a library

or body of code.

Second, an OAA facilitator is distinguished by its handling of compound goals (introduced in
Section 5.3.1). This involves three types of processing: delegation, that is, determination of
who (which speci�c agents) will execute a compound goal and how (combination and routing
of results from subgoals); optimization of the completed goal, including parallelization where

appropriate; and interpretation of the optimized goal. The delegation step results in a goal
that is unambiguous as to its meaning and as to the agents that will participate in satisfying
it. Completing the addressing of a goal involves the selection of one or more agents to handle

each of its subgoals (that is, each subgoal for which this selection has not been speci�ed by
the requester). In doing this, the facilitator uses its knowledge of the capabilities of its

client agents (and possibly of other facilitators, in a multifacilitator system). It may also use
strategies or advice speci�ed by the requester, as explained below. The optimization step

results in a goal whose interpretation will require as few exchanges as possible, between the
facilitator and the satisfying agents, and can exploit parallel e�orts of the satisfying agents,

wherever this does not a�ect the goal's meaning. The interpretation of a goal involves

the coordination of requests to the satisfying agents, and assembling their responses into a

coherent whole, for return to the requester.

The third respect in which OAA facilitation extends the basic concept of facilitation is that

the facilitator can employ strategies and advice given by the requesting agent, thus resulting

in a variety of interaction patterns that may be instantiated in the satisfaction of a request.

Some of these strategies are mentioned in Section 5.4, and additional possibilities under
consideration are mentioned in Section 11.

18

www.manaraa.com

Finally, the OAA concept of facilitation has been generalized so as to handle the distribution

of both data update requests and requests for installation of triggers, using some of the

same strategies that are employed in the delegation of service requests. (Triggers and data

maintenance mechanisms are discussed in sections 7 and 6 respectively.)

It should be noted that the reliance on facilitation is not absolute; that is, there is no hard

requirement that requests and services be matched up by the facilitator, or that interagent

communications go through the facilitator. (Indeed, as mentioned elsewhere, there is support

in the agent library for explicit addressing of requests, and planned support for peer-to-peer

communications.) However, OAA has been designed so as to encourage developers to employ

the paradigm of community, and to minimize their development e�ort in doing so, by taking

advantage of the facilitator's provision of transparent delegation and handling of compound

goals.

In summary, we stress that a facilitator is always viewed as a coordinator, not a controller, of

cooperative task completion. The facilitator never initiates an activity, but rather responds
to requests to manage the satisfaction of some goal, the update of some data repository, or the
installation of a trigger by the appropriate agent or agents. This approach makes it possible

for all agents to take advantage of the facilitator's expertise in delegation, and its up-to-date
knowledge about the current membership of a dynamic community. In addition, in many
situations, the facilitator's coordination services allows the developer to lessen the complexity
of individual agents, resulting in a more manageable software development process, and
enabling the creation of lightweight agents.

6 Maintaining Data Repositories

The agent library supports the creation, maintenance, and use of databases, in the form of
data solvables. Creation of a data solvable requires only that it be declared, as explained
in Section 5.2.1. Querying a data solvable, as with access to any solvable, is done using
oaa Solve. Here, we clarify the ways in which these solvables are maintained and used, and
mention some of the features associated with them.

A data solvable is conceptually the same as a relation in a relational database. The facts as-
sociated with each solvable are maintained by the agent library, which also handles incoming
messages containing queries of data solvables. It is possible to re�ne the default behavior of

the library in managing these facts, using parameters speci�ed with the solvable's declara-

tion. For example, the parameter single value is used to indicate that the solvable should

only contain a single fact at any given point in time. The parameter unique values indicates

that no duplicate values should be stored.

Other parameters can allow data solvables to make use of the concepts of ownership and

persistence. Because data solvables are often used to implement shared repositories, it can
be useful to maintain a record of which agent created each fact of a solvable; this agent

is considered to be the fact's owner. In many applications, it is useful to have an agent's
facts removed when that agent goes o�ine (that is, the agent is no longer participating in

19

www.manaraa.com

the agent community, whether by deliberate termination or by malfunction). When a data

solvable is declared to be nonpersistent, its facts are automatically maintained in this way,

whereas a persistent data solvable retains its facts until they are explicitly removed.

The agent library provides procedures by which agents can update (add, remove, and replace)

facts belonging to data solvables, either locally or on other agents, given that they have the

required permissions. These procedures may be re�ned using many of the same parameters

that apply to service requests. For example, the address parameter is used to specify one

or more particular agents to which the update request applies. In its absence, just as with

service requests, the update request goes to all agents providing the relevant data solvable.

This default behavior can be used to maintain coordinated \mirror" copies of a data set

within multiple agents, and can be useful in support of distributed, collaborative activities.

Similarly, the feedback parameters, described in connection with oaa Solve, are also available

for use with data maintenance requests.

The ability to provide data solvables is not limited to client agents; data solvables can also be
maintained by a facilitator, at the request of a client of the facilitator, and their maintenance

and use shared by all the facilitator's clients. This can be a useful strategy with a relatively
stable collection of agents, where the facilitator's workload is predictable.

6.1 Using a Blackboard Style of Communication

When a data solvable is publicly readable and writable, it may be thought of as a global
data repository, which can be used cooperatively by a group of agents. In combination with
the use of triggers, this allows the agents to organize their e�orts around a \blackboard"
style of communication.

As an example, the \DCG-NL" agent (one of several existing natural language processing
agents), which provides natural language processing services for a variety of its peer agents,
expects those other agents to record, on the facilitator, the vocabulary to which they are
prepared to respond, with an indication of each word's part of speech, and of the logical
form (ICL subgoal) that should result from the use of that word. To make this possible,

when it comes online, the NL agent installs a data solvable for each basic part of speech on
its facilitator. For instance, one such solvable would be

solvable(noun(Meaning, Syntax), [], [])

(Note that the empty lists for the solvable's permissions and parameters are acceptable here,
since the default permissions and parameters provide appropriate functionality.)

In the O�ce Assistant system, several agents make use of these services. For instance, the
database agent uses the following call, to library procedure oaa AddData, to post the noun

`boss', and to indicate that the \meaning" of boss is the concept `manager':

oaa_AddData(noun(manager, atom(boss)), [address(parent)])

20

www.manaraa.com

7 Autonomous Monitoring with Triggers

OAA triggers provide a general mechanism for requesting that some action be taken when

some set of conditions is met. Each agent can install triggers either locally, for itself, or

remotely, on its facilitator or peer agents. There are four types of triggers: communication,

data, task, and time. In addition to a type, each trigger speci�es a condition and an action,

both expressed in ICL. The condition indicates under what circumstances the trigger should

�re, and the action indicates what should happen when it �res. In addition, each trigger can

be set to �re either an unlimited number of times, or a speci�ed number of times, which can

be any positive integer.

Triggers are used in a wide variety of ways within OAA systems, for example, for monitoring

external sensors in the execution environment, tracking the progress of complex tasks, or

coordinating communications between agents that are essential for the synchronization of

related tasks. The installation of a trigger within an agent can be thought of as a represen-
tation of that agent's commitment to carry out the speci�ed action, whenever the speci�ed

condition holds true.

The four types of triggers can be characterized informally as follows:

� Communication triggers allow any incoming or outgoing event (message) to be moni-
tored. For instance, a simple communication trigger may say something like

\Whenever a solution to a goal is returned from the facilitator, send the result to the
presentation manager to be displayed to the user."

� Data triggers monitor the state of a data repository (which can be maintained on a

facilitator or a client agent). Data triggers' conditions may be tested upon the addition,
removal, or replacement of a fact belonging to a data solvable. An example data trigger
is

\When 15 users are simultaneously logged on to a machine, send an alert message to
the system administrator."

� Task triggers contain arbitrary conditions that are tested after the processing of each

incoming event and whenever a timeout occurs in the event polling. These conditions
may specify any goal executable by the local ICL interpreter, and most often are used

to test when some solvable becomes satis�able.

Task triggers are useful in checking for task-speci�c internal conditions. Although in
many cases such conditions are captured by solvables, in other cases they may not be.

For example, a mail agent might watch for new incoming mail, or an airline database

agent may monitor which
ights will arrive later than scheduled. An example task
trigger is

\When mail arrives for me about security, notify me immediately."

� Time triggers monitor time conditions. For instance, an alarm trigger can be set to �re

at a single �xed point in time (e.g., \On December 23rd at 3pm"), or on a recurring

basis (e.g., \Every three minutes from now until noon").

21

www.manaraa.com

Triggers are implemented as data solvables, declared implicitly for every agent. When re-

questing that a trigger be installed, an agent may use many of the same parameters that

apply to service and data maintenance requests.

One important feature of OAA triggers is that, in contrast with most programming method-

ologies, the agent on which the trigger is installed only has to know how to evaluate the

conditional part of the trigger, not the consequence { when the trigger �res, the action is

delegated to the facilitator for execution. Whereas many commercial mail programs allow

rules of the form \When mail arrives about XXX, [forward it, delete it, archive it]", the

possible actions are hard-coded and the user must select from a �xed set. In OAA, the

consequence may be any compound goal executable by the dynamic community of agents.

Since new agents de�ne both functionality and vocabulary, when an unanticipated agent (for

example, a fax agent) joins the community, no modi�cations to existing code is required for

a user to make use of it { \When mail arrives, fax it to Bill Smith."

8 The Agent Library

OAA's agent library, which provides the necessary infrastructure for constructing an agent-
based system, is available in several programming languages, including PROLOG, C, C++,
JAVA, LISP, VISUAL BASIC, and DELPHI. As mentioned earlier, two goals of the library's
design have been to minimize the e�ort required to construct a new system, and to maximize

the ease with which legacy systems can be agenti�ed.

The library's several families of procedures, provide all the functionalities mentioned in
this paper, as well as many that are omitted, for lack of space. For example, dec-
larations of an agent's solvables, and their registration with a facilitator, are managed

using procedures such as oaa Declare, oaa Undeclare, and oaa Redeclare. Updates to
data solvables can be accomplished with a family of procedures including oaa AddData,
oaa RemoveData, and oaa ReplaceData. Similarly, triggers are maintained using procedures
such as oaa AddTrigger, oaa RemoveTrigger, and oaa ReplaceTrigger.

The essential elements of protocol (that is, the details of the messages that encapsulate a

service request and its response) are provided by the library, and made transparent in so far as
possible, so that application code can be simpler. This enables the developer to focus on the

desired functionality, rather than on the details of message construction and communication.
For example, to request a service of another agent, an agent calls the library procedure

oaa Solve. This call results in a message to a facilitator, which will exchange messages with

one or more service providers, and then send a message containing the desired results to the

requesting agent. These results are returned via one of the arguments of oaa Solve. None
of the messages involved in this scenario is explicitly constructed by the agent developer.
(Note that this is a description of the synchronous use of oaa Solve.)

The agent library provides both intraagent and interagent infrastructure; that is, mechanisms

supporting the internal structure of individual agents, on the one hand, and mechanisms of
cooperative interoperation between agents, on the other. It is worth noting that most of

22

www.manaraa.com

the infrastructure cuts across this boundary; that is, many of the same mechanisms support

both agent internals and agent interactions in an integrated fashion. For example, services

provided by an agent can be accessed by that agent through the same procedure (oaa Solve)

that it would employ to request a service of another agent (the only di�erence being in the

address parameter accompanying the request). This, in turn, helps the developer to reuse

code and avoid redundant entry points into the same functionality.

Both of the characteristics described above (transparent construction of messages and inte-

gration of intraagent with interagent mechanisms) apply to most other library functionality

as well, including data management and temporal control mechanisms.

9 OAA Applications

The OAA has been used to implement more than �fteen applications integrating such diverse
technologies as image processing, speech recognition, multiuser collaboration, text extrac-
tion, planning, and virtual reality. Table 1 is a partial list of OAA-based applications from

which we will take a few examples to illustrate qualities important to the framework.

9.1 Uni�ed Messaging

The Uni�ed Messaging application extends the Automated O�ce presented in section 4 with
an emphasis on ubiquitous access and dynamic presentation of the information and services
supported by the agent community. The agents used in this application are depicted in
Figure 4.

A real dialog taken from the current system can provide insight into how systems are built

using OAA. In this scenario, the user, with only a telephone as an interface, is planning a trip
to Boston where he will soon give a presentation. Capitalized sentences are phrases spoken
by the user into the telephone and processed by a phone agent. Responses, unless otherwise

indicated, are spoken by the system using text-to-speech generation.

1.1 Welcome to SRI International. Please enter your user ID and password.

<Enters touchtone ID and password>

Good to see you again Adam Cheyer. I am listening to you.

Every user interface agent, including the telephone agent, should know the identify of its
user. This information is used in resolving anaphoric references such as \me" and \I", and

allows multiple user interfaces operated by the same user to work together.

1.2 WHAT IS TODAY'S SCHEDULE?

Here is today's schedule for Adam Cheyer:

At 10am for 1 hour, meeting with Dave.

23

www.manaraa.com

At 3pm for 1 hour, presentation about software agents.

End of schedule.

If the user is operating both a graphical user interface and a telephone, as described in

conjunction with the Automated O�ce application, the result of this spoken request is to

display a calendar window containing the current schedule. In this case, with no graphical

display available, the GEN NL agent is tasked to produce a spoken response that can be

played over the phone. GEN NL shares the same dynamic vocabulary and phrasal rules as

the natural language parser DCG NL, and contains strategies for producing responses to

queries using either simple or list-based multimedia utterances.

1.3 FIND FRIDAY'S WEATHER IN BOSTON.

The weather in Boston for Friday is as follows:

Sunny in the morning. Partly cloudy in the afternoon with a 20

percent chance of thunderstorms late. Highs in the mid 70s.

In addition to data accessible from legacy applications, content may be retrieved by web-

reading agents which provide OAA wrappers around useful websites.

1.4 FIND ALL NEW MAIL MESSAGES.

There are 2 messages available.

Message 1, from Mark Tierny, entitled ``OAA meeting.''

1.5 NEXT MESSAGE

Message 2, from Jennifer Schwefler, entitled ``Presentation Summary.''

1.6 PLAY IT.

This message is a multipart MIME-encoded message. There are two parts.

Part 1. (Voicemail message, not text-to speech):

Thanks for taking part as a speaker in our conference.

The schedule will be posted soon on our homepage.

1.7 NEXT PART

Part 2. (read using text-to-speech):

The presentation home page is http://www....

1.8 PRINT MESSAGE

Command executed.

Mail messages are no longer just simple text documents, but often consist of multiple subparts

containing audio �les, pictures, webpages, attachments and so forth. When a user asks to

play a complex email message over the telephone, many di�erent agents may be implicated
in the translation process, which would be quite di�erent given the request \print it." The

challenge is to develop a systemwhich will enable agents to cooperate in an extensible,
exible

manner that alleviates explicit coding of agent interactions for every possible input/output

combination.

24

www.manaraa.com

In an OAA implementation, each agent concentrates only on what it can do and on what it

knows, and leaves other work to be delegated to the agent community. For instance, a printer

agent, de�ning the solvable print(Object,Parameters), can be de�ned by the following pseu-

docode, which basically says, \If someone can get me a document, in either POSTSCRIPT

or text form, I can print it.".

print(Object, Parameters) {

' If Object is reference to ``it'', find an appropriate document

if (Object = "ref(it)")

oaa_Solve(resolve_reference(the, document, Params, Object),[]);

' Given a reference to some document, ask for the document in POSTSCRIPT

if (Object = "id(Pointer)")

oaa_Solve(resolve_id_as(id(Pointer), postscript, [], Object),[]);

' If Object is of type text or POSTSCRIPT, we can print it.

if ((Object is of type Text) or (Object is of type Postscript))

do_print(Object);

}

In our example, since an email message is the salient document, the mail agent will receive
a request to produce the message as POSTSCRIPT. Whereas the mail agent may know how

to save a text message as POSTSCRIPT, it will not know what to do with a webpage or
voicemail message. For these parts of the message, it will simply send oaa Solve requests to
see if another agent knows how to accomplish the task.

Until now, the user has been using only a telephone as user interface. Now, he moves to his
desktop, starts a web browser, and accesses the URL referenced by the mail message.

1.9 RECORD MESSAGE

Recording voice message. Start speaking now.

1.10 THIS IS THE UPDATED WEB PAGE CONTAINING THE PRESENTATION SCHEDULE.

Message one recorded.

1.11 IF THIS WEB PAGE CHANGES, GET IT TO ME WITH NOTE ONE.

Trigger added as requested.

In this example, a local agent which interfaces with the web browser can return the current

page as a solution to the request \oaa Solve(resolve reference(this, web page, [], Ref),[])",

sent by the NL agent. A trigger is installed on a web agent to monitor changes to the page,
and when the page is updated, the notify agent can �nd the user and transmit the webpage

and voicemail message using the most appropriate media transfer mechanism.

This example based on the Uni�ed Messaging application is intended to show how OAA

concepts can be used to produce a simple yet extensible solution to a multiagent problem

25

www.manaraa.com

that would be di�cult to implement using a more rigid framework. The application supports

adaptable presentation for queries across dynamically changing, complex information; shared

context and reference resolution among applications; and
exible translation of multimedia

data. In the next section, we will present an application which highlights the use of parallel

competition and cooperation among agents during multimodal fusion.

9.2 Multimodal Map

The goal of the Multimodal Map application is to explore natural ways of communicating

with a community of agents. Inspired by the way a professor would instruct his students

at a blackboard, through combinations of drawing, writing, speaking, gesturing, circling,

underlining and so forth, the Multimodal Map provides an interactive interface on which the

user may draw, write or speak. In a travel planning domain (Figure 5), available information

includes hotel, restaurant, and tourist-site data retrieved by distributed software agents from
commercial Internet sites. The types of user interactions and multimodal issues handled by
the application can be illustrated by a brief scenario from (Cheyer et al., 1998) featuring

working examples taken from the current system.

Sara is planning a business trip to San Francisco, but would like to

schedule some activities for the weekend while she is there. She turns

on her laptop PC, executes a map application, and selects San Francisco.

2.1 [Speaking] Where is downtown?

Map scrolls to appropriate area.

2.2 [Speaking and drawing region] Show me all hotels near here.

Icons representing hotels appear.

2.3 [Writes on a hotel] Info?

A textual description (price, attributes, etc.) appears.

2.4 [Speaking] I only want hotels with a pool.

Some hotels disappear.

2.5 [Draws a crossout on a hotel that is too close to a highway]

Hotel disappears

2.6 [Speaking and circling] Show me a photo of this hotel.

Photo appears.

2.7 [Points to another hotel]

Photo appears.

2.8 [Speaking] Price of the other hotel?

Price appears for previous hotel.

2.9 [Speaking and drawing an arrow] Scroll down.

Display adjusted.

2.10 [Speaking and drawing an arrow toward a hotel]

What is the distance from this hotel to Fisherman's Wharf?

Distance displayed.

2.11 [Pointing to another place and speaking] And the distance to here?

26

www.manaraa.com

Distance displayed.

Sara decides she could use some human advice. She picks up the phone,

calls Bob, her travel agent, and writes Start collaboration to synchronize

his display with hers. At this point, both are presented with identical

maps, and the input and actions of one will be remotely seen by the other.

3.1 [Sara speaks and circles two hotels]

Bob, I'm trying to choose between these two hotels. Any opinions?

3.2 [Bob draws an arrow, speaks, and points]

Well, this area is really nice to visit. You can walk there from

this hotel.

Map scrolls to indicated area. Hotel selected.

3.3 [Sara speaks] Do you think I should visit Alcatraz?

3.4 [Bob speaks] Map, show video of Alcatraz.

Video appears.

3.5 [Bob speaks] Yes, Alcatraz is a lot of fun.

For this system, the main research focus is on how to generate the most appropriate inter-
pretation for the incoming streams of multimodal input. Besides providing a user interface
to a dynamic set of distributed agents, the application is built using an agent framework,
with the OAA helping coordinate competition and cooperation among information sources,
which work in parallel to resolve the ambiguities arising at every level of the interpretation

process:

� Low-level processing of the data stream: Pen input may be interpreted as a gesture
(e.g., 2.5: crossout) by one algorithm, or as handwriting by a separate recognition
process (e.g., 2.3: \info?"). Multiple hypotheses may be returned by a modality recog-
nition component.

� Anaphora resolution: When resolving anaphoric references, separate information
sources may contribute to resolving the reference:

{ Context by object type: For an utterance such as \show photo of the hotel", the
natural language component can return a list of the last hotels talked about.

{ Deictic: In combination with a spoken utterance like \show photo of this hotel",
pointing, circling, or arrow gestures might indicate the desired object (e.g., 2.7).
Deictic references may occur before, during, or after an accompanying verbal

command.

{ Visual context: Given the request \display photo of the hotel", the user interface

agent might determine that only one hotel is currently visible on the map, and

therefore this might be the desired reference object.

27

www.manaraa.com

{ Database queries: Information from a database agent can be combined with re-

sults from other resolution strategies. Examples are \show me a photo of the

hotel in Menlo Park" and 2.2.

{ Discourse analysis: Discourse can provide a source of information for phrases such

as \No, the other one" (or 2.8).

This list is by no means exhaustive. Examples of other resolution methods include

spatial reasoning (\the hotel between Fisherman's Wharf and Lombard Street")

and user preferences (\near my favorite restaurant").

� Cross-modality in
uences: When multiple modalities are used together, one modality

may reinforce or disambiguate the interpretation of another. For instance, the interpre-

tation of an arrow gesture may vary when accompanied by di�erent verbal commands

(e.g., \scroll left" vs. \show info about this hotel"). In the latter example, the system

must take into account how accurately and unambiguously an arrow selects a single
hotel.

� Addressee: With the addition of collaboration technology, humans and automated
agents all share the same workspace. A pen doodle or a spoken utterance may be
meant for either another human, the system (3.1), or both (3.2).

The implementation of the Multimodal Map application exploits several features of the OAA:

� Reference resolution and task delegation are handled in a distributed fashion by the

parallel parameters of oaa Solve, with meta-agents encoding rules to help the facilitator
make context- or user-speci�c decisions about priorities among knowledge sources.

� Basic multiuser collaboration is handled through OAA's built-in data management ser-
vices. The map user interface publishes data solvables for elements such as icons,
screen position, and viewers, and de�nes these elements to have the attribute \share-
able". For every update to this public data, the changes are automatically replicated
to all members of the collaborative session, with associated callbacks producing the

visible e�ect of the data change (e.g., adding or removing an icon).

� Functionality for recording and playback of a session is easily implemented by adding
agents as members of the collaborative community. These agents either record the data

changes to disk, or read a log�le and replicate the changes in the shared environment.

� The domain-speci�c code for interpreting travel planning dialog is cleanly separated

from the speech, natural language, pen recognition, database and map user interface

agents. These components were reused without modi�cation to add multimodal map
capabilities to other applications for activities such as crisis management, multi-robot

control, and the MVIEWS tools for the video analyst.

28

www.manaraa.com

10 Related Work

Agent-based systems have shown much promise for
exible, fault-tolerant, distributed prob-

lem solving. Much of the foundational work on agent technology has focused on interagent

communication protocols (Finin et al., 1997), patterns of conversation for agent interactions

(FIPA, 1997), and basic facilitation capabilities, including agent name servers and other

types of registry services (e.g., brokers, matchmakers) (Sycara et al., 1996).

Because there is insu�cient space here to cover the gamut of work on agent architectures, we

restrict ourselves to mentioning several projects that have helped to evolve some notion of

facilitation. Genesereth has emphasized the role of a facilitator (Genesereth and Singh, 1993;

Genesereth and Katchpel, 1994), and in (Genesereth and Singh, 1993) describes a facilitator

based on logical reasoning. This facilitator shares our emphasis on content-based routing

and the synthesis of complex multistep delegation plans, but does not go as far as OAA in

allowing the service requester to in
uence the strategies used by the facilitator. Similarly, the
InfoSleuth system (Nodine and Unruh, 1997) employs matchmaking agents having the ability

to reason deductively about whether expressions of requirements (by requesters) match with
the advertised capabilities of service providers. KQML (Labrou and Finin, 1997; Finin et
al., 1997) provides \capability-de�nition performatives", such as advertise, and \facilitation
performatives", such as broker one and broker all. While these performatives may be suitable
for structuring the basic interactions between the players in a facilitated system, it should

be noted that they provide only a communication protocol. That is, the speci�c strategies
employed by a facilitator, and the means of advising a facilitator in selecting a strategy,
are beyond the scope of KQML speci�cations. Sycara et al. delineate the concepts of
matchmaking, brokering, and facilitation in a useful way, and explore the tradeo�s inherent
in the use of these approaches. Overall, they �nd that a brokered or facilitated system can

exhibit dramatically better performance than one based on matchmaking.

11 Future Directions

Much work remains to be done, both at implementation and conceptual levels. Areas for
further investigation include scalability, robustness (fault tolerance), improved development

and runtime tools, and improved facilitation strategies and services.

The use of facilitators o�ers both advantages and weaknesses with respect to scalability and

fault tolerance. On the plus side, the grouping of a facilitator with a collection of client agents

provides a natural building block from which to construct larger systems. On the minus side,
there is the potential for a facilitator to become a communication bottleneck, or a critical

point of failure. In tasks requiring a sequence of exchanges between two agents, it is possible
for a facilitator to assist them in �nding one another and establishing communication, but

then to step out of the way while they communicate over a direct, dedicated channel. This is a

relatively straightforward extension to our approach, which we plan to incorporate. For more
complex task con�gurations, we see three general areas to explore in addressing these issues.

First, a variety of multifacilitator topologies can be exploited in constructing large systems.

29

www.manaraa.com

It would be useful to investigate which of these exhibits the most desirable properties with

respect to both scalability and fault tolerance. Second, it is possible to modularize the

facilitator's key functionalities. For example, goal planning (delegation and optimization)

can readily be separated from goal execution. Given this, one can envision a con�guration in

which the execution task is distributed to other agents, thus freeing up the facilitator. Third,

we would like to incorporate mechanisms for basic transaction management, periodically

saving the state of agents (both facilitator and client), and rolling back to the latest saved

state in the event of the failure of an agent.

With respect to agent development tools, we plan on updating our initial work in this area

(described at PAAM96 in (Martin et al., 1996)) to a more group-oriented and web-centric

design. Improvements to the linguistic tools, and a graphical monitoring agent would also

be desirable.

While much work has been done by agent researchers to demonstrate increased autonomy

of individual agents (particularly in the category of information �ltering and personal assis-
tants), smarter and more autonomous facilitators (or other means of coordinating multiple
agents) are likely to be more critical to the evolution of multiagent systems. Our experience

to date has shown value in the handling of compound goals, with advice parameters, by
facilitators. However, the advice is still relatively simple, and the discretion exercised by the
facilitator relatively limited. Thus, we are interested in exploring the use of more sophisti-
cated strategies by the facilitator, guided by a higher level of advice. It may be possible to
draw upon existing work in the (arti�cial intelligence) �eld of planning and the (database)

�eld of query planning. Facilitation is also likely to bene�t from richer representations of
agents' capabilities.

12 Summary

The Open Agent Architecture provides a framework for the construction of distributed soft-
ware systems, which facilitates the use of cooperative task completion by
exible, dynamic
con�gurations of autonomous agents. We have presented the rationale underlying its de-

sign, compared its features to those of other distributed frameworks, and summarized the

applications built to date using it. In addition, we have described the major components of
OAA infrastructure, and the mechanisms used in assembling an agent-based system. These

mechanisms include a general approach to achieving cooperation between agents, organized
around the declaration of capabilities by service-providing agents, the construction of goals

by users and service-requesting agents, and the role of facilitators in coordinating the satis-

faction of these goals, subject to advice and constraints that may accompany them; facilities
for creating and maintaining shared repositories of data; and the use of triggers to instantiate
commitments within and between agents.

30

www.manaraa.com

References

Adam Cheyer and Luc Julia. 1995. Multimodal maps: An agent-based approach. In Proc. of

the International Conference on Cooperative Multimodal Communication (CMC/95), Eind-

hoven, The Netherlands, May. Also available at http://www.ai.sri.com/�oaa/ + \Bibliog-

raphy".

Adam Cheyer and Luc Julia. 1998. Mviews: Multimodal tools for the video analyst. In

Proceedings of the 1998 International Conference on Intelligent User Interfaces (IUI98), San

Francisco, California, January.

Adam Cheyer, Luc Julia, and Jean-Claude Martin. 1998. A uni�ed framework for con-

structing multimodal applications. In Proceedings of the 1998 Conference on Cooperative

Multimodal Communication (CMC98), San Francisco, California, January.

Philip R. Cohen, Adam J. Cheyer, Michelle Wang, and Soon Cheol Baeg. 1994. An open
agent architecture. In O. Etzioni, editor, Proc. of the AAAI Spring Symposium Series on

Software Agents, pages 1{8, Stanford, California, March. American Association for Arti�cial
Intelligence.

Tim Finin, Yannis Labrou, and James May�eld. 1997. KQML as an agent communication

language. In Je� Bradshaw, editor, Software Agents. MIT Press, Cambridge.

FIPA. 1997. Foundation for intelligent physical agents (FIPA) 1997 speci�cation. Available
online at http://drogo.cselt.stet.it/�pa/spec/�pa97.htm.

D. Gelernter. 1993. Mirror Worlds. Oxford University Press, New York.

Michael R. Genesereth and Richard E. Fikes. 1992. Knowledge interchange format version
3.0 reference manual. Technical Report Logic-92-1, Stanford University, Stanford, CA. Also
available online at http://logic.stanford.edu/kif/kif.html.

M. R. Genesereth and S. P. Katchpel. 1994. Software agents. Communications of the ACM,
37(7):48{53.

M. R. Genesereth and N. P. Singh. 1993. A knowledge sharing approach to software interop-
eration. Technical Report Logic-93-1, Department of Computer Science, Stanford University,

Stanford, CA.

Didier Guzzoni, Adam Cheyer, Luc Julia, and Kurt Konolige. 1997. Many robots make

short work: Report of the SRI international moble robot team. AI Magazine, 18(1):55{64.

Yannis Labrou and Tim Finin. 1997. A proposal for a new KQML speci�cation. Techni-
cal Report CS-97-03, Computer Science and Electrical Engineering Department, University

of Maryland Baltimore County, Baltimore, MD 21250, February. Also available online at
http://www.cs.umbc.edu/kqml/.

31

www.manaraa.com

David L. Martin, Adam Cheyer, and Gowang-Lo Lee. 1996. Agent development tools

for the open agent architecture. In Proceedings of the First International Conference on

the Practical Application of Intelligent Agents and Multi-Agent Technology, pages 387{404,

Blackpool, Lancashire, UK, April. The Practical Application Company Ltd.

David L. Martin, Hiroki Oohama, Douglas Moran, and Adam Cheyer. 1997. Information

brokering in an agent architecture. In Proceedings of the Second International Conference

on the Practical Application of Intelligent Agents and Multi-Agent Technology, Blackpool,

Lancashire, UK, April. The Practical Application Company Ltd.

Microsoft. 1996. Distributed component object model protocol { DCOM/1.0. Available

online at http://www.microsoft.com/activex/ + DCOM.

Robert Moore, John Dowding, Harry Bratt, J. ~Mark Gawron, Yonael Gorfu, and Adam

Cheyer. 1996. Commandtalk: A spoken-language interface for battle�eld simula-
tion. Technical report, Arti�cial Intelligence Center, SRI International, 21 June. Also,
http://www.ai.sri.com/natural-language/projects/arpa-sls/apps.html.

Douglas B. Moran and Adam J. Cheyer. 1995. Intelligent agent-based user interfaces. In
Proc. of International Workshop on Human Interface Technology 95 (IWHIT'95), pages

7{10, Aizu-Wakamatsu, Fukushima, Japan, 12-13 October. The University of Aizu. Also
available at http://www.ai.sri.com/�oaa/ + \Bibliography . . . ".

Douglas B. Moran, Adam J. Cheyer, Luc E. Julia, and David L. Martin. 1997. The open

agent architecture and its multimodal user interface. In Proceedings of the 1997 International
Conference on Intelligent User Interfaces (IUI97), Orlando, Florida, 6-9 January.

M. H. Nodine and A. Unruh. 1997. Facilitating open communication in agent systems:

the InfoSleuth infrastructure. Technical Report MCC-INSL-056-97, Microelectronics and
Computer Technology Corporation, Austin, Texas 78759, April.

Object Management Group (OMG). 1997. The complete CORBA/IIOP 2.1 speci�cation.
Available online at http://www.omg.org/corba/corbiiop.htm.

A. Rao and M. George�. 1995. BDI agents from theory to practice. Technical Note 56,

AAII, April.

David G. Schwartz. 1995. Cooperating Heterogeneous Systems. Kluwer AcademicPublishers,

Dordrecht.

K. Sycara, K. Decker, and M. Williamson. 1996. Matchmaking and brokering. In Proc. of

the Second International Conference on Multi-Agent Systems (ICMAS-96), December.

32

www.manaraa.com

Figure 1: OAA System Structure.

33

www.manaraa.com

Application Description

Automated O�ce Mobile interfaces (PDA with telephone) to integrated

community of commercial o�ce applications (calendar,

database, email) and AI technologies (speech recognition,

speaker identi�cation, text to speech, natural language

interpretation and generation). (Cohen et al., 1994)

Uni�ed Messaging Adaptable, ubiquitous access to email, fax, voice, and

Web messages and services

Multimodal Map Pen/voice interface to distributed Web data. (Cheyer

and Julia, 1995)

InfoWiz Animated voice interactive interface to the Web.

ATIS-Web Try out a live demo of speech recog-
nition over the Web! Available at
http://www.speech.sri.com/demos/atis.html

CommandTalk Spoken-language interface for controlling simulated
forces. (Moore et al., 1996)

Spoken Dialog Summarization Real-time system for summarizing human-human spon-
taneous spoken dialogs (Japanese).

Language Tutoring Speech recognition for foreign language learning, incor-
porating user modeling for adaptive lessons.

Disaster response Collaborative, wireless map-based interface for emer-
gency response teams.

MVIEWS Integrating speech, pen, natural language, image process-
ing and other technologies for the video analyst. (Cheyer
and Julia, 1998)

OAA InfoBroker Mediated facilitation of heterogeneous structured and
semistructured (Web) datasources. (Martin et al., 1997)

OAA Rental Agent Monitors the Web and noti�es user when housing classi-
�eds meet user speci�cations.

Agent Development Tools Guides the agent developer through the steps required to
create new agents. (Martin et al., 1996)

Multi-Robot Control Team of robots works together on assigned tasks (1st

place, AAAI O�ce Navigation Event). (Guzzoni et al.,

1997)

Surgical Telepresence Force feedback training simulator for endoscopic surgery.
All physical and virtual entities modeled as OAA agents.

Table 1: A partial list of applications written using OAA.

34

www.manaraa.com

Figure 2: Automated O�ce Agents.

35

www.manaraa.com

Figure 3: User Interface for Automated O�ce Application.

36

www.manaraa.com

Figure 4: Uni�ed Messaging Agents.

37

www.manaraa.com

Figure 5: Multimodal Map Application.

38

